46 research outputs found

    An Evolutionary Analysis of B-Box Transcription Factors in Strawberry Reveals the Role of FaBBx28c1 in the Regulation of Flowering Time

    Get PDF
    Flowering connects vegetative and generative developmental phases and plays a significant role in strawberry production. The mechanisms that regulate strawberry flowering time are unclear. B-box transcription factors (BBXs) play important roles in the flowering time regulation of plants. Nevertheless, BBXs in octoploid cultivated strawberry (Fragaria ananassa) and their functions in flowering time regulation have not been identified. Here, we identified 51 FaBBXs from cultivated strawberry and 16 FvBBXs from diploid wild strawberry (Fragaria vesca), which were classified into five groups according to phylogenetic analysis. Further evolutionary analysis showed that whole-genome duplication or segmental duplication is a crucial factor that leads to the expansion of the BBX gene family in two strawberry species. Moreover, some loss and acquisition events of FaBBX genes were identified in the genome of cultivated strawberry that could have affected traits of agronomic interest, such as fruit quality. The promoters of FaBBX genes showed an enrichment in light-responsive, cis-regulatory elements, with 16 of these genes showing changes in their transcriptional activity in response to blue light treatment. On the other hand, FaBBX28c1, whose transcriptional activity is reduced in response to blue light, showed a delay in flowering time in Arabidopsis transgenic lines, suggesting its role in the regulation of flowering time in cultivated strawberry. Our results provide new evolutionary insight into the BBX gene family in cultivated strawberry and clues regarding their function in flowering time regulation in plants

    An Evolutionary Analysis of B-Box Transcription Factors in Strawberry Reveals the Role of FaBBx28c1 in the Regulation of Flowering Time

    Get PDF
    Flowering connects vegetative and generative developmental phases and plays a significant role in strawberry production. The mechanisms that regulate strawberry flowering time are unclear. B-box transcription factors (BBXs) play important roles in the flowering time regulation of plants. Nevertheless, BBXs in octoploid cultivated strawberry (Fragaria ananassa) and their functions in flowering time regulation have not been identified. Here, we identified 51 FaBBXs from cultivated strawberry and 16 FvBBXs from diploid wild strawberry (Fragaria vesca), which were classified into five groups according to phylogenetic analysis. Further evolutionary analysis showed that whole-genome duplication or segmental duplication is a crucial factor that leads to the expansion of the BBX gene family in two strawberry species. Moreover, some loss and acquisition events of FaBBX genes were identified in the genome of cultivated strawberry that could have affected traits of agronomic interest, such as fruit quality. The promoters of FaBBX genes showed an enrichment in light-responsive, cis-regulatory elements, with 16 of these genes showing changes in their transcriptional activity in response to blue light treatment. On the other hand, FaBBX28c1, whose transcriptional activity is reduced in response to blue light, showed a delay in flowering time in Arabidopsis transgenic lines, suggesting its role in the regulation of flowering time in cultivated strawberry. Our results provide new evolutionary insight into the BBX gene family in cultivated strawberry and clues regarding their function in flowering time regulation in plants

    FaGAPC2/FaPKc2.2 and FaPEPCK reveal differential citric acid metabolism regulation in late development of strawberry fruit

    Get PDF
    Citric acid is the primary organic acid that affects the taste of strawberry fruit. Glycolysis supplies key substrates for the tricarboxylic acid cycle (TCA cycle). However, little is known about the regulatory mechanisms of glycolytic genes on citric acid metabolism in strawberry fruits. In this study, the citric acid content of strawberry fruit displayed a trend of rising and decreasing from the initial red stage to the full red stage and then dark red stage. Thus, a difference in citric acid metabolic regulation was suspected during strawberry fruit development. In addition, overexpression of either cytoplasm glyceraldehyde-3-phosphate dehydrogenase (FxaC_14g13400, namely FaGAPC2) or pyruvate kinase (FxaC_15g00080, namely FaPKc2.2) inhibited strawberry fruit ripening and the accumulation of citric acid, leading to a range of maturity stages from partial red to full red stage. The combined transcriptome and metabolome analysis revealed that overexpression of FaGAPC2 and FaPKc2.2 significantly suppressed the expression of phosphoenolpyruvate carboxykinase (FxaC_1g21491, namely FaPEPCK) but enhanced the content of glutamine and aspartic acid. Meanwhile, the activities of PEPCK and glutamate decarboxylase (GAD) were inhibited, but the activities of glutamine synthase (GS) were increased in FaGAPC2/FaPKc2.2-overexpressed fruit. Further, functional verification demonstrated that overexpression of FaPEPCK can promote strawberry fruit ripening, resulting in a range of maturity stage from full red to dark red stage, while the citric acid synthase (CS) activities and citric acid content were significantly decreased. Overall, this study revealed that FaGAPC2/FaPKc2.2 and FaPEPCK perform an important role in reducing citric acid content in strawberry fruit, and FaGAPC2/FaPKc2.2 mainly by promoting the GS degradation pathway and FaPEPCK mainly by inhibiting the CS synthesis pathway

    High precision positioning system for autopilot based on multi-sensor fusion

    No full text
    For autonomous vehicles, autonomous positioning is a core technology in their development. A good positioning system not only helps them efficiently complete autonomous operations, but also improves safety performance. At present, the use of global positioning system (GPS) is a more mainstream positioning method, but in indoor, serious shelter and other environments, GPS signal loss will lead to positioning failure. In order to solve this problem, this paper proposes a method of mapping before positioning, and designs a set of high precision real-time positioning system by combining the technology of multi-sensor fusion. The designed system was carried on a Wuling sightseeing bus, and the mapping and positioning tests were carried out in the Nanhu Campus of Wuhan University of Technology, the East Campus of Mafangshan Campus and the underground garage where GPS signals were lost. The test results show that the system can realize the high precision real-time positioning function of the autonomous vehicle. Therefore, the in-depth study and implementation of this system is of great significance to the promotion and application of the automatic driving industry

    Investigation and Ecological Evaluation of Plant Resources on Campus of Jiamusi University

    No full text
    The purpose of the systematic investigation of plant resources in Jiamusi University campus is to understand the composition, community characteristics and ecological distribution of plant resources in Jiamusi University, and to make rational use of them. In the process of investigation, the methods of actual step-by-step search and data search are adopted to carry out ecological evaluation. According to statistics, there are 113 kinds of plants on Jiamusi University campus, of which 93 are woody plants and 18 are herbaceous plants. Its growth environment is suitable for forest margin, undergrowth, hillside, and shrub and so on. Its main uses are greening, shading, dust prevention and noise reduction. It has high value. It is hoped that the research will provide a basis for the future construction of ecological civilization on campus

    Research on NDT-based Positioning for Autonomous Driving

    No full text
    Autonomous driving technology is one of the currently popular technologies, while positioning is the basic problem of autonomous navigation of autonomous vehicles. GPS is widely used as a relatively mature solution in the outdoor open road environment. However, GPS signals will be greatly affected in a complex environment with obstruction and electromagnetic interference, even signal loss may occur if serious, which has a great impact on the accuracy, stability and reliability of positioning. For the time being, L4 and most L3 autonomous driving modules still provide registration and positioning based on the high-precision map constructed. Based on this, this paper elaborates on the reconstruction of the experimental scene environment, using the SLAM (simultaneous localization and mapping) method to construct a highprecision point cloud map. On the constructed prior map, the 3D laser point cloud NDT matching method is used for real-time positioning, which is tested and verified on the “JAC Electric Vehicle” platform. The experimental results show that this algorithm has high positioning accuracy and its real-time performance meets the requirements, which can replace GPS signals to complete the positioning of autonomous vehicles when there is no GPS signal or the GPS signal is weak, and provide positioning accuracy meeting the requirements

    Unmanned parking method based on cloud platform

    No full text
    With the intelligent development of automobile driving, automatic parking technology is widely concerned by relevant technicians at home and abroad. Automatic parking technology is a method that can realize automatic parking in and out of parking Spaces without manual intervention. At present, automatic parking system has been equipped and used in many models, but there are many problems such as low parking accuracy and unable to effectively identify irregular parking Spaces. In order to solve the above problems, this article is based on a cloud platform developed a driverless car parking method, through the cloud server, GPS (Global Positioning System) and inertial navigation. It can according to the parking information and real-time Positioning planning adjustment path of the vehicle, and controls the complete vehicle posture adjustment, so as to improve the accuracy of parking and parking intelligent identification accuracy and ensure the safety and efficiency in the process of path planning. The effectiveness of the method is verified by simulation experiments with MATLAB software, which can be demonstrated by data

    Genetic richness affects trait variation but not community productivity in a tree diversity experiment

    Full text link
    Biodiversity–ecosystem functioning experiments found that productivity generally increases with species richness, but less is known about effects of within‐species genetic richness and potential interactions between the two. While functional differences between species can explain species richness effects, empirical evidence regarding functional differences between genotypes within species and potential consequences for productivity is largely lacking. We therefore measured within‐ and among‐species variation in functional traits and growth and determined stand‐level tree biomass in a large forest experiment factorially manipulating species and genetic richness in subtropical China. Within‐species variation across genetic seed families, in addition to variation across species, explained a substantial amount of trait variation. Furthermore, trait responses to species and genetic richness varied significantly within and between species. Multivariate trait variation was larger among individuals from species mixtures than those from species monocultures, but similar among individuals from genetically diverse vs genetically uniform monocultures. Correspondingly, species but not genetic richness had a positive effect on stand‐level tree biomass. We argue that identifying functional diversity within and among species in forest communities is necessary to separate effects of species and genetic diversity on tree growth and community productivity
    corecore